Conductive Keratoplasty to Treat Complications of LASIK and Photorefractive Keratectomy

Peter S. Hersh, MD,1,2 Kristen L. Fry, OD,1,2 Ravindra Chandrashekhar, MD,1 Desipina S. Fikaris, BS1

Purpose: To assess the outcomes of conductive keratoplasty (CK) for patients with complications related to LASIK or photorefractive keratectomy (PRK).

Design: Retrospective, noncomparative, interventional case series.

Participants: Sixteen eyes of 15 patients were treated using CK after complications of initial LASIK or PRK surgeries. Five cases are described in detail.

Intervention: Rehabilitative CK was performed.

Main Outcome Measures: Uncorrected visual acuity (UCVA) and best spectacle-corrected visual acuity (BSCVA), refractive error, keratometry, topography analysis, and a subjective assessment of visual quality.

Results: After CK treatment, there was a mean improvement in UCVA of 2 lines; 1 eye lost 1 line of UCVA. Best-corrected visual acuity improved or remained the same in 12 of 15 eyes; no eyes lost 1 line of BSCVA. There was a mean reduction in astigmatism of 54%. Videokeratography generally demonstrated improved quality of the corneal optical surface, and patients reported a reduction in optical symptoms such as glare and halo.

Conclusions: Conductive keratoplasty may give improved corneal optics and vision in patients with complications of LASIK or PRK. This application of CK offers an alternative in cases in which further flap manipulation or laser treatments are contraindicated. Ophthalmology 2005;112:1941–1947 © 2005 by the American Academy of Ophthalmology.

Complication rates for LASIK and photorefractive keratectomy (PRK) have been variously reported, ranging from 0.7% to 11.8%.1–9 Such rates vary widely and may not be comparable because some studies include cases of optical complications such as night glare or halo, whereas others include only frank surgical or postsurgical complications such as flap buttonhole or infection. Patients with significant LASIK and PRK complications often face a lengthy multi-step recovery process. For example, techniques such as flap lifting, smoothing, suturing, and phototherapeutic keratectomy (PTK) may be employed, and secondary LASIK and PRK refractive corrections may be necessary.2,7,10–12 In some cases, however, further laser correction or flap manipulation is undesirable. For a subset of these, we have found that conductive keratoplasty (CK) may afford a useful tool for corneal rehabilitation.

The CK procedure uses radiofrequency energy to reshape the cornea biomechanically via thermal collagen shrinkage.13–16 Using a circumferential spot pattern applied via a 450-μm probe, CK has been successful in the treatment of mild to moderate spherical hyperopia in previously untreated eyes.17–19 A collagen shrinkage strategy also could be useful in complicated cases of LASIK and PRK, particularly to treat hyperopia, astigmatism, or irregular astigmatism when further laser or flap manipulation is contraindicated. Therefore, in this report we present a case series in which CK was performed in an effort to rehabilitate the cornea after complications of excimer laser surgery.

Patients and Methods

Study Population

Patients who had LASIK and PRK complications and suffered a contraindication to further laser surgery were included in this case series. Patients who required routine refractive enhancement surgery were not included.

Twenty-five CK procedures were performed on 16 eyes of 15 patients. One patient was treated bilaterally. Six eyes required only 1 CK procedure, 6 eyes had 2 procedures each, 1 eye had 3, and 1 eye had 4. Thirteen patients were male, and 2 were female. The mean age was 50.6 years (±12.0; range, 23–75). The number of treatment spots ranged from 4 to 26, with a mean of 15. Mean
follow-up was 143.1 days from last CK treatment (±107.1; range, 7–361).

Conductive Keratoplasty Procedure

Full informed consent was given, and the patients were advised that CK was being performed as an off-label non–Food and Drug Administration approved procedure. Before each operating session, the CK instrument was calibrated per the manufacturer’s recommended procedure. The axis of treatment for astigmatism corrections was marked at the slit lamp with a tissue marking pen.

After the patient was supine on the operating table, the operative field was prepared in a sterile fashion with povidone iodine. A patch was taped over the nontreated eye to facilitate coaxial fixation by the patient. Tetracaine drops were instilled 3 times to achieve topical anesthesia. The CK lid speculum was placed. The patient was asked to look at a coaxial fixation target, and a CK marking instrument coated with gentian violet was placed centered on the pupil and properly aligned with regard to astigmatism axis. This instrument has a 7.0-mm central ring and 8 radial posts extending to the 6.0- and 8.0-mm optical zones to guide spot placement. Cellulose sponges were used to remove any residual fluid from the surface.

Conductive keratoplasty spots were applied using the gentian violet template as a guide. Care was taken to assure that the probe was placed perpendicular to the cornea. Enough force was applied to the tip to assure maximum penetration depth up to the stop. After each ring was applied, the probe tip was inspected under the microscope and any epithelial debris carefully cleaned with a cellulose sponge.

At the end of the procedure, prednisolone acetate 1% and an antibiotic drop were applied. The patient continued these drops 4 times daily for 1 week.

Nomogram

Using the standard CK nomogram, a single ring of 8 spots at a 7-mm diameter gives an expected correction of +0.75 to +0.875 diopters (D). Adding a second ring at a 6-mm diameter gives a correction of +1.0 to +1.875 D. Adding a third ring at 8 mm gives +1.75 to +2.25 D. Finally, adding 8 spots at the 7-mm diameter gives an expected correction of +2.375 to +3.00 D. Our clinical experience suggested, however, that a greater effect is achieved in corneas having undergone previous myopic LASIK and PRK, ostensibly secondary to central corneal thinning. Thus, in general, treatments were planned conservatively with the anticipation that double the clinical effect would be achieved using the standard nomogram. Intraoperative keratometry measurements then guided further spot placement. For astigmatism treatments, our general goal in cases done later in our series was to treat 150% to 200% of the cylinder on keratometry, because our experience in earlier cases suggested some regression in the astigmatism correcting effect over time. For instance, if the cornea preoperatively was 3 D steep at 90°, we would aim for an immediate postoperative change to 1.5 to 3.0 D steep at 180°. In general, CK application was started with 2 spots straddling the flat axis at an optical zone of 9 mm. Intraoperative keratometry and topography analysis then were used to guide further spot placement, including both additional spots at the same optical zone or at a smaller optical zone if more effect was necessary.

Data Acquisition and Analysis

Distance (6.0 m) UCVA was measured under controlled lighting conditions using a back-illuminated Early Treatment Diabetic Retinopathy Study chart (Lighthouse for the Blind, New York, NY).

Results

Preoperative Data

In all patients studied, the mean distance uncorrected VA (UCVA) was 20/64, and near UCVA was 20/23. Best spectacle-corrected VA (BSCVA) was 20/23. Mean manifest refraction spherical equivalent (SE) was +1.09 D (±1.24; range, −1.63 to +3.75). Mean refractive cylinder was 1.92 D (±1.71; range, 0–5.5).

Postoperative Data

Uncorrected Visual Acuity. Mean distance UCVA improved to 20/37, an average of 2 lines. Nine eyes showed improved UCVA, 3 eyes had no change, and 4 eyes worsened (Fig 1). One eye had a significant loss of UCVA. That patient was overcorrected with a postoperative refraction of −1.0/−2.0 × 120° and a consequent decrease in UCVA from 20/30 to 20/200. Postoperative mean near UCVA was 20/47.

Best Spectacle-Corrected Visual Acuity. Mean BSCVA after CK was 20/24. The mean change in lines of BSCVA was −0.13. One patient showed 1 line of improved BSCVA, 11 eyes had no change, and 3 eyes worsened by 1 line (Fig 2).

Manifest Refraction Spherical Equivalent and Refractive Cylinder. Manifest refraction SE improved to −0.15 D (±0.72; range, −2.0 to +1.13). Mean cylinder decreased 54% to 0.88 D (±0.78; range, 0–2.75). The mean change in cylinder was a reduction of 1.0 D (Fig 3).

Case Reports

Figure 4 summarizes the preoperative data, CK surgical strategy, and postoperative outcomes of the individual reported cases.

Case 1 (Free LASIK Flap; Hyperopic Astigmatism)

A 54-year-old woman was seen in consultation after experiencing a free flap during the LASIK procedure. Despite the free flap, laser
refractive correction was administered. Reportedly, the lamellar flap was found to be dislocated and was repositioned the day after initial treatment. Subsequently, she underwent a second flap repositioning with removal of epithelial ingrowth and flap suturing.12

Six months later, UCVA was 20/50. Flap sutures previously had been removed. Manifest refraction of +3.75/-5.50 × 150° yielded 20/30 VA. Corneal pachymetry was 509 µm. Slit-lamp examination revealed a clear cornea with a smooth flap. Because further flap manipulation and laser treatment were considered to be contraindicated, the patient underwent CK for treatment of residual hyperopic astigmatism. Six CK spots were placed at a 9-mm optic zone, straddling the flat 152.5° meridian (3 superiorly, 3 inferiorly) (Fig 5). Surgery was uneventful. Intraoperative keratometry measurement was 47.50/46.00 × 155°. One week after CK, UCVA in the left eye was 20/20, with manifest refraction of +0.25/-1.25 × 140°. Three months postoperatively, the patient was retreated using CK for residual hyperopic astigmatism of +1.25/-1.75 × 150°. Four additional CK spots were positioned in the 8-mm optic zone, straddling the 150° meridian (2 superior, 2 inferior). Intraoperative keratometry measurement was 49.00/45.50 × 75°. One day after the CK retreatment, UCVA was 20/20 and keratometry was 47.50/47.00 × 180°. One month after retreatment, VA remained good, with UCVA of 20/25 and manifest refraction of plano/-0.50 × 135°. One year later, manifest refraction was +0.50/-1.00 × 150°, with 20/30 UCVA. Topographic analysis showed a much improved cornea contour (corneal uniformity index, 70%, vs. 30% preoperatively; Holladay Diagnostic Summary, EyeSys, Houston, TX) and reduced astigmatism.

Case 2 (Flap Striae; Mixed Astigmatism)

A 59-year-old male presented with complaints of glare and halo in his right eye after bilateral LASIK surgery 1 year earlier. Subsequently, he underwent a PTK procedure for treatment of map–fingerprint dystrophy and flap striae.10

Two months after PTK, UCVA was 20/25 and manifest refraction was +1.00/-1.50 × 135°, giving 20/20. Keratometry measurement was 40.50/39.25 × 150°, with regular mires. The map–fingerprint dystrophy and flap striae were markedly reduced. Because further flap manipulation was considered inadvisable because of previous striae and epithelial problems, the patient underwent CK for residual hyperopic astigmatism. Five spots were delivered (3 spots superiorly, 2 spots inferiorly) straddling the flat 125° meridian at an optical zone of 8 mm. Intraoperative keratometry was 42.50/40.00 × 15°.

Visual acuity 1 day after CK was 20/20, and keratometry measurement was 41.00/39.25 × 180°. At 2 months postoperatively, VA was 20/25, improving to 20/20 with manifest refraction of +0.75/-0.50 × 130°. Repeated refractive and keratometric measurements over the next 6 months remained consistent. Therefore, the patient underwent a repeat CK treatment for the residual hyperopia. Eight additional CK spots were placed at the 8-mm optic zone diameter. Intraoperative keratometry was 42.00/41.25 × 175°. One day after retreatment, vision was 20/20. At 1 month, UCVA remained 20/20, manifest refraction was plano/-0.75 × 155°, and keratometry was 42.00/41.25 × 175°. Subjective glare and halo symptoms were resolved.

Case 3 (Flap Striae; Hyperopia)

A 43-year-old male underwent LASIK in the right eye, with an attempted correction of −3.00/-1.00 × 112.5°. After a second flap manipulation for residual refractive error, flap striae were noted. Therefore, the patient underwent flap repositioning and smoothing. Two months later, the flap again was relifted, smoothed using adjunctive hypotonic saline, and repositioned using 6 radial sutures for treatment of residual striae. Three months later, UCVA was 20/200, improving to 20/20 with manifest refraction of +1.75 D. Keratometry was 38.75/38.50 × 90°.

Because further flap manipulation was considered inadvisable secondary to resolution of flap striae and extensive previous manipulation, CK was performed using 8 spots at a 7-mm optic zone diameter. An additional spot was placed at 8 mm along the 90° meridian based on intraoperative topographic and keratometric findings. One day after CK, UCVA was 20/80 and the keratometry measurement was 42.25/40.00 × 80°. Two months later, UCVA had improved to 20/40. Manifest refraction was +0.50/-1.00 × 65°, giving 20/30 VA. Keratometry was 40.00/39.50 × 85°.

Case 4 (Thin Flap; Irregular Hyperopic Astigmatism)

A 23-year-old male was seen in consultation after LASIK for myopia during which a thin flap had occurred. Notwithstanding, the laser treatment was performed and the patient subsequently underwent a retreatment for residual refractive error. The patient presented with a complaint of visual distortion. Uncorrected distance VA was 20/100, and near UCVA was 20/50. Manifest refraction of +1.75/-6.00 × 155° gave VA of 20/25.
Rigid gas-permeable contact lens overrefraction provided 20/20 vision and resolved patient symptoms. Keratometry was 42.50/40.50/H11003 160° with mild distortion, and topographic analysis showed 1.63 D of irregular astigmatism.

Given the thin flap and irregular astigmatism, CK was performed. Using topographic guidance to treat the different hemi-meridians of astigmatism, 2 CK spots straddling the 155° meridian superiorly and 3 spots straddling the 145° meridian inferiorly were applied at an 8-mm optic zone diameter. Intraoperative keratometry was 44.00/41.00/H11003 60°. Three hours after CK, keratometry measurement remained fairly stable, with the flat topographic astigmatism axis measuring 2.66/H11003 53 (Fig 6). Three weeks later, UCVA was 20/40 and manifest refraction of /H11002 0.25/ /H11002 0.75/H11003 5° provided 20/30 vision.

At 3 months postoperatively, regression of the CK effect was noted. Uncorrected VA was 20/50, with manifest refraction of /H11001 1.00/ /H11002 3.75/H11003 150° giving 20/30. Keratometry was 43.00/41.75/H11003 155°. Therefore, CK retreatment was performed. Five CK spots were applied, 3 spots superiorly spanning the 155° meridian and 2 spots inferiorly straddling 150° at an optical zone of 8 mm. Intraoperative keratometry was 46.00/41.00 × 55°. The patient reported immediate improvement in VA to 20/30. Two weeks postoperatively, UCVA remained 20/30. Six months later, UCVA was 20/100 and manifest refraction had regressed to +1.75/−0.75 × 115° giving 20/20. Successful CK treatment in the right eye also was performed for a post-LASIK overcorrection of +1.75 D. Sixteen spots were circumferentially placed, 8 each at optical zone diameters of 8 mm and 9 mm. Uncorrected VA improved to 20/25 and remained stable at 6 months with a refraction of plano.

Discussion

Potential Advantages and Disadvantages of Conductive Keratoplasty

The treatment of hyperopia or hyperopia with astigmatism after other refractive surgery procedures is a potentially useful application of the CK procedure. In addition, CK offers unique advantages to patients who have encountered complications during initial refractive surgery. In particular, it allows for correction of hyperopia, hyperopic astigmatism, and irregular astigmatism in some cases in which further flap manipulation or additional laser ablation is undesirable. Such cases may include thin corneas, thin flaps, corneas with successfully treated striae, corneas with epithelial basement membrane dystrophy or surface disorders, and eyes that have had multiple surgeries.
Figure 5. Case 1. Left, Preoperative conductive keratoplasty (CK) axial topography map. Right, Placido's ring image with overlying CK treatment schematic. Note that the superimposed ring represents the 7-mm optical zone, and the tips of the radial hash marks represent the 6- and 8-mm zones. Depicted spots are at a 9-mm optical zone diameter along the flat axis of astigmatism. D = diopters; dis = distance; dk = difference in keratometry; K = keratometry; OS = left eye; pwr = power; rad = radius; SIM = simulated.

Figure 6. Case 4. Upper left, Preoperative conductive keratoplasty (CK) axial topography map. Lower left, Three-hour postoperative CK axial topography map. Right, Difference topography map with overlying CK treatment schematic. Note steepening in the axis of CK application. D = diopters; dis = distance; dk = difference in keratometry; K = keratometry; OS = left eye; pwr = power; rad = radius; SIM = simulated.
For instance, after procedures involving a free cap or thin flap, such as cases 1 and 4, CK provides a means of surgically treating residual hyperopia and/or astigmatism without violating the compromised flap. Cases 2 and 3 are illustrative examples of other situations in which further surgical handling of the flap would be an unattractive option, given the successful resolution of flap striae with previous procedures. Interestingly, reports indicate that, although PTK treatments for striae have achieved success, they may also induce a hypertropic shift that would necessitate further surgical treatment to attain emmetropia. Conductive keratoplasty offers a solution for residual hypertopic correction in such cases. Finally, case 5 illustrates a hypertropic overcorrection after LASIK where further laser ablation is contraindicated because of corneal thinning and the risk of consequent ectasia.

Surface ablation is another option for treatment of residual hyperopia with or without astigmatism in some cases in which flap manipulation is to be avoided. In comparison, CK allows for a quicker healing process without the associated discomforts and potential morbidities of cornea re-epithelialization after PRK. Moreover, the CK spot application can be titrated until the desired correction is achieved. Such a multistep plan may be a more conservative approach, especially in eyes that have had less than optimal responses to previous surgical treatment. Additional treatment spots can be applied easily at a later date without great inconvenience to the patient if further correction is necessary. However, the implications of repeated treatments in the same area are as yet unclear.

Contrasting with these benefits are potential downsides of the procedure. As seen in this report, many eyes did require second and third treatments for either lack of achieving the complete desired initial effect or regression of treatment effect. This high rate of retreatment should be noted by both the surgeon and the potential patient. Similarly, results can vary and are not assured of being positive. In general, though, frank complications or undesired side effects seem to be rare.

Surgical Strategy and Nomogram

We have found that the treatment effect after both PRK and LASIK is approximately double that in previously untreated corneas. Thus, in such cases we have modified the recommended nomogram, which is based on native hyperopia in surgically untreated eyes, to avoid overcorrection. Each case is approached with a conservative treatment plan that is augmented as suggested by intraoperative keratometry. Thus, CK in the postsurgical setting is somewhat of an art that is not entirely predictable in preoperative planning.

The cause of the enhanced CK effect is likely biomechanical. Patients who have had previous excimer laser surgery have a postoperative corneal thickness that is centrally less than normal but peripherally unchanged. In a recent unpublished analysis of 1624 patients presenting for refractive surgery in our practice, the mean corneal thickness measured using ultrasound pachymetry was 546 (±35) μm, which corroborates reports in the literature. The average pre-CK pachymetry measurement in this series was 460 μm—thus, on average, 86 μm thinner than normal. It seems that the circumferential collagen contracture produced by CK spots placed in the midperiphery has a more profound central steepening effect when the central cornea has been thinned, likely secondary to a decreased modulus of elasticity. Parenthetically, it should be noted that the CK spots are placed in the unablated or minimally ablated midperiphery and that the surgeon preoperatively should assure adequate corneal thickness in the area of actual spot application before proceeding. Alternatively, it has been suggested that a change in the structural relationship between the anterior and posterior lamellae from previous surgery may influence the response to the radiofrequency energy.

Based on our experience, we propose that the application of CK spots be approached conservatively. In general, the anticipated result is twice that of the standard nomogram. Thus, optic zone diameters of 8 or 9 mm are often used as a starting point for treatment, compared with the standard 6-, 7-, and 8-mm optic zone diameters in untreated eyes. For example, our patient in case 5 who had a residual corneal thickness of 385 μm (LASIK) underwent a 16-spot treatment at diameters of 7 and 8 mm for an attempted correction of +3.25 D. In comparison, in a patient with native hyperopia a 32-spot treatment would be recommended to achieve the same degree of correction.

Keratometry measurements are taken intraoperatively to determine if further treatment is required. In general, we aim for modest overcorrection (approximately 125%–150% of desired correction) as measured intraoperatively by keratometry to anticipate relaxation of the corneal effect in the early postoperative phase.

Astigmatism Strategy

In theory, shrinking the collagen lamellae with a CK spot will decrease the chord length of the cornea in the meridian of application, hence steepening the cornea in that axis. Indeed, calculations suggest that there will be a meridian steepening of 1 D for each 23 μm of decreased chord length. In addition, focal shrinkage in a hemimeridian would be expected to move the cornea apex away from the application.

Therefore, CK spots are placed in the appropriate flat hemimeridians in patients with both regular and irregular astigmatism. We have noted 2 features of meridionally placed CK spots for astigmatism in the postoperative setting. First, they induce a large magnitude of correction. Thus, treatment should be planned cautiously, starting at relatively wide optical zone diameters (e.g., 8 or 9 mm). Second, there tends to be regression. Thus, we aim for approximately 150% to 200% correction at surgery in anticipation of corneal remodeling. Again, treatment is monitored by intraoperative keratometry, Placido’s disc imagery, or videokeratography.

Irregular astigmatism resulting from LASIK and PRK complications presents a unique challenge. The recent introduction of custom wavefront-guided ablations provides a potential surgical therapy for irregularly shaped corneas. However, current wavefront technology limits treatments to
moderate degrees of astigmatism and reproducible wavefront patterns, eliminating many of the patients most in need of rehabilitative care. Because CK spots can be individually placed, the procedure affords a strategy for treating some cases of irregular astigmatism. For instance, in case 4, 2 spots straddling the 155° axis superiorly and 3 spots straddling the 145° axis inferiorly provided treatment along the non-orthogonal flat meridians as identified by topography analysis. Similarly, case 1 showed an objectively improved optical surface after CK treatment as measured by the topographically derived corneal uniformity index.

Conductive keratoplasty seems to be an effective procedure for treating some cases of hyperopic astigmatism after excimer laser surgeries, particularly in situations where further flap manipulation or laser treatment is contraindicated. However, the surgeon must be aware of the need for intraoperative assessment of effect, possible unpredictability, and frequent regression. It is important to be conservative in the initial treatment plan, with titration of surgery as judged by intraoperative measurements. Notwithstanding, complications seem to be rare and results often satisfactory in situations not amenable to other rehabilitative surgeries.

References